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Abstract

Underconstrained (kinematically indeterminate) assemblies of bars and pin-joints possess a specific kind
of nonlinearity which appears even for small displacements and linear elasticity. Various approaches to
nonlinear analysis based on the Newton—Raphson procedure are considered. The subspace Newton—Raph-
son technique is proposed. Theoretical considerations are accompanied by numerical examples of plane and
space underconstrained assemblies. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The concept of statical determinacy and indeterminacy is familiar to structural engineers. Degree
of statical indeterminacy equals the difference between the number of the members of the assembly
and the rank of the equilibrium matrix. Similarly a concept of kinematic determinacy and inde-
terminacy may be introduced. The degree of kinematic indeterminacy equals the difference between
the number of degrees of freedom of the assembly and the rank of the geometric (transposed
equilibrium) matrix. Nonzero degree of kinematic indeterminacy means existence of infinitesimal
displacements which do not produce elongations of the members or, in other words, it means that
the system of linear homogeneous kinematic equations possesses a nontrivial solution (infinitesimal
mechanism).

Usually, kinematically indeterminate assemblies (mechanisms or kinematic chains) cannot bear
an external load. However, there is a specific class of kinematically indeterminate assemblies—
underconstrained structures, which can bear an external load. These underconstrained structures
are of practical and theoretical interest. On the one hand, they are very light and their use leads to
economy of materials. On the other hand, a theory of underconstrained structures allows to
complete, in some sense, classical structural mechanics of pin-jointed assemblies. Interest in the
theory of underconstrained structures arose lately (Calladine and Pellegrino, 1991; Kuznetsov,
1991; Tarnai, 1980; Vilnay, 1990); although they were used for a long time in engineering practice:
underconstrained cable nets, tensegrity structures and so on.

* Fax: 00 972 4 8323433; e-mail: cvolokh@aluf_technion.ac.il

0020-7683/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved
PII1: S0020-7683(98)00112-7



2176 K.Yu. Volokh | International Journal of Solids and Structures 36 (1999) 2175-2187

Problems of design and linear analysis of underconstrained structures based on the displacement
method and concept of stiffness matrix were developed in Volokh and Vilnay (1997a, b). Analysis
of underconstrained structures which takes into account geometrical nonlinearity is considered
below.

2. Newton—Raphson procedures
2.1. Formulation of the problem

Mathematically, analysis of underconstrained (as well as fully constrained) structures is based
on:

e equilibrium equations
B'(P,+P)=Q (1)

where B is an n x m geometric matrix of direction cosines; P, and P are vectors of initial member
forces and force increments; Q is a vector of external nodal loads;

e constitutive equations (Hooke’s law)
P = SA 2

where S is an n x n uncoupled stiffness matrix with diagonal nonzero entries: S; = E,F;//;including
the ith member Young modulus, cross-section area and length correspondingly; A is a vector of
member elongations;

e kinematic equations
A = A(U) 3)
which present member elongations as a function of nodal displacements.

Various forms of eqn (3) are possible and will be discussed below (Section 4). It is important,
however, that the choice of kinematic equations influences the form of equilibrium equations
(matrix B). This relationship may be traced, generally, by using the principle of virtual dis-
placements or, in the case of elasticity, with the help of the principle of stationarity of potential
energy. This is the only way to obtain equilibrium equations consistent with used kinematic
assumptions.

Let the internal energy of deformation be written in matrix and componentwise forms as follows

Q = ATSA+PIA )
LS|

Q= Z <2 SiAiz +P0iAi> (4/)
i=1

then the left hand side of eqn (1) is obtained by differentiating eqn (4) with respect to displacements
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2.2. Newton—Raphson procedure based on purely displacement formulation of the problem (DNR)

By substituting eqns (2), (3) into eqn (1) it is possible to obtain equilibrium equations in terms
of displacements. The DNR procedure takes the following form in this case

kdb =Q —B[T(PO + 1’5) (7

P = SA )
i+1 i i

U =U+dU )
0

U=0 (10)

with the upper index designating iteration number.
The tangent stiffness matrix may be written as follows

—A+D (11)

ouaul;,

; 20 P :
jk = 5Uk8U P A.//<+D.//*’ (11 )

J U

where

A = BSBJ;, (12)

i " 0N, OA
k=Y 2 S|, (12)

=10U; 0U; |

i JB'P,+P

b — [ (a[(}+ )] [ (13)
18]
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By designating Euclidean vector norm as |*||, and tolerance as f it is possible to formulate the
convergence criterion in the following form

IQ—B"(P,+P)[,[Q[>" < ~0.01 = 0.001 (14)
2.3. Newton—Raphson procedure based on force—displacement formulation of the problem (FDNR)

In this case both displacements and force increments are considered as unknowns. Substitution
of eqn (3) into eqn (2) leads to the following coupled system of equations

B'(P,+P) =Q
SA—P =0 (15)
Applying the NR procedure to these equations we obtain

i

B7dP+DdU = Q—B"(P, +P)

SBAU—dP = P—SA (16)
Excluding le from the first equation the following is obtained

KdU = Q—B(P, +SA) (17)
i+1 i i i i i

P = P+dP = SA+SBdU (18)
i+1 i i

U =U+dU (19)
0 0

U=0;, P=0 20)

The convergence criterion takes the form

1Q—B"(Py +SA)[L|Q[>" < B

3. Orthogonal decomposition of displacements and “subspace” Newton—Raphson procedures

In this section it is considered how to take into account the specific features of underconstrained
assemblies’ behaviour and to modify nonlinear analysis accordingly. The main idea may be traced
to linear analysis. In this case the NR procedure is limited by a single iteration

0 0o o
(B'SB+D)U = Q
0 ¢
which presents the key equation of linear analysis. Matrix B’SB is dominant but rank deficient.
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0
The latter is the reason why D cannot be neglected in the case of underconstrained structures as
contrasted to fully constrained ones. The structure of the initial stiffness matrix suggests special
orthogonal decomposition of displacements and subsequent transformation of the equation:
Volokh and Vilnay (1997a). It is possible to extend this technique to nonlinear analysis assuming
that displacements are small and, consequently, the structure of the tangent stiffness matrix is
similar to its initial form.
The displacement vector is presented as a sum of two mutually orthogonal vectors

U=U"+U 1)

Ur=2Ze ++2Z,_.e,_, (22)

U=2Z, e 1+ +Ze, (23)
or

U=WZ; W=le,....e,_,}; Z=1{Z,....2,.,}7 (24)

U'=WZ; W=1{e, ,.1»..0€); Z=1{Zp ,i1,.... 72,7 (25)

Here Z, Z. are vectors of new unknowns; columns of matrices W and W form orthonormal bases
0

0

of the nullspace and row space of matrix B correspondingly; r is the rank of B and m —r is nothing
but the degree of kinematic indeterminacy. It is easy to observe the physical meaning of the
decomposition of displacements given by formulae (22)—(25). Vector U* (k for “‘kinematic™) is
solution of homogeneous initial kinematic equations. This means that it presents infinitesimal
displacements which do not produce member elongations or, more accurately, the elongations are
of smaller order of magnitude than displacements. On the contrary, vector U¢ (e for “elastic”)
represents displacements which produce member elongations of the same order of magnitude as
displacements. Now displacement increments take the form

ww | ¢ 26
=1 ][dl} (26)

By substituting eqn (26) into eqn (7) or (17) and premultiplying the latter by [WW]” from the left
it is possible to obtain

K L|laz] |o,
i i i | = i (27)
L K'||dZ Q;

where Ql, Qz are right hand side of eqn (7) or (17) premultiplied by W7 and W correspondingly;
= W’KW is an r x r elastic tangent stiffness matrix; K* = WKW is an m—r x m—r kinematic
tangent stiffness matrix; L = W/KW.
Equation (27) may be rewritten as follows:

[I(lk—I:T(I(Ic)illlJ]d’Z — dz—ﬂT(Iée)7161 (28)
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K4Z = Q, — LdZ (29)

Neglecting small values in the above equations we obtain

KdZ = Q, (30)
0 i

KdZ = Q, — LdZ 31)

Thus the kinematic stiffness matrix of small dimension (m—r « m) is inverted at every iteration,
while the elastic stiffness matrix of large dimensions is constant and must be inverted only
once. Taking into account that convergence of the procedure is affected mainly by kinematic
displacements which span only the m—r subspace of the displacement space it is natural to call
this procedure ‘“‘subspace”. Implementation of eqns (30), (31) instead of eqn (7) leads to the
subspace NR procedure on the base of displacement formulation (SDNR). Implementation of
eqns (30), (31) instead of eqn (17) leads to the subspace NR procedure on the base of force—
displacement formulation (SFDNR).

An important feature of the subspace technique is the possibility to identify the case of “‘equi-

librium load” (which lies in the column space of the initial equilibrium matrix ﬁr) at the first
iteration. In this case

1 1
L)t < 1 (32)

and the procedure may be interrupted as unnecessary.

4. Kinematic equations

All the above considerations were carried out without explicit formulation of kinematic eqns
(3). Let now various forms of these equations be considered.

4.1. Exact equations

This is the most obvious case which does not use any assumption

A =1—1, (33)

[; = \/(X/+ Uj_Xv_Uv)z-i_(X/fl +Ui+1 +Xv+1 _Uv+l)2+(Xj+2+U/+2_X9+2_Ur+2)2
(34)

li:\/(Xj_Xs)2+(X/+l_Xs+l)2+(‘X}+2_Xs+2)2 (35)

It should be noted that Ujth displacement is zeroed if it corresponds to a supporting point.
Thus the geometric matrix takes the following form
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g A _X—X+U,-U
Yoo i

(36)
Entries of the geometric stiffness matrix are exact direction cosines for deformed configuration.

4.2. Small strains

By introducing new notation

& = e+ w; (37)
0 = X,-l—in U/; U n X ;XSH Ujis z Uiy n Xi+2;Xv+2 U/+2;Us+z (38)
cmz1<U”4Lf+l<%“_{&“f+1(“%”%A”f (39)
2 l; 2 l; 2 l;
eqn (34) takes the form
l[=11+2 (40)

On the other hand an “engineering’ strain or relative elongation of the ith member is defined as
follows

from which it is obtained that

li=1L,(1+T) (42)
By equating right hand sides of eqns (40) and (42) it is possible to conclude that

T,+5T; =¢ (43)

In case of small strains (but not displacements) eqn (43) is replaced approximately by the following
Ti=e<«<l (44)

Thus the ith member elongation takes the form A; = /g; and with account of eqns (37)—(39) the
geometric matrix takes the following form

WA, X~ X+ U—U,

BT

(45)

Intuitively, this equation may be obtained directly from eqn (36) in assumption /; = /..
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4.3. Small displacements

In this case we assume that
U.
o= T’ « 1 (46)

for appropriate i and j and, expanding A; = /,(\/ 1 +2¢,— 1) into power series about displacements,
obtain

e/

Terms of the third- and higher-orders of magnitude with respect to o are omitted. The ijth entry
of the geometric matrix is

A, (X—X)(—e)+U,—U;
iU, /

J

B (43)

4.4. Discussion

Comparing entries of geometric matrices presented by eqns (36), (45) and (48) in accordance
with exact kinematics, small strains and small displacement assumptions, it is possible to conclude
that the assumption of small strains leads to the simplest and computationally preferable scheme,
which is also general enough for linear elasticity. However, the final choice of kinematics should
be left to numerical examples which allow to compare convergence of the procedures based on
different kinematics.

Another interesting and, mainly, theoretical aspect of comparison of various formulations of
kinematics is the possibility to identify “smallness’™ of displacements. Indeed, let some computed
displacements satisfy estimate o« ~ 0.1 or 0.01 or 0.001. Are they small? This question may be
answered only by comparing results based on kinematics with and without small displacement
assumptions.

5. Numerical examples

Two structures are considered. The first one (Fig. 1) is a plane underconstrained cable net and
the second one (Fig. 2) is an underconstrained space assembly symmetric relatively horizontal
middle plane. Both structures comprise members of circular cross-section diameter 0.4 cm and
elasticity modulus 2.1 - 10° kg/cm?. The plane net includes 11 members and possesses 12 degrees of
freedom. Its degree of kinematic indeterminacy is two. The space assembly includes 145 members
and possesses 150 degrees of freedom. Its degree of kinematic indeterminacy is 15. Pre-stressing
forces of both structures are given in the first column of Tables 1 and 2. Pre-stressing forces of the
space assembly are given for some typical members only and may be extended to the rest with
account of symmetry. The second and the third columns of the tables present computed values of
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Fig. 1. Underconstrained plane net (all dimensions are in cm).

Table 1
Plane net analysis

Prestressing Displacements Force Displacements Force

forces P, (cm) increments (cm) increments

(kg) (Po) (Po) (0.1 Py) (0.1 Py)
1 33 —0.135761 23.1873 —0.17569 39.7813
2 29.1682 0.227331 19.7734 0.294745 34.4443
3 29.1682 0.1372 19.6517 0.177651 34.3223
4 33 0.226088 21.3767 0.29262 37.9665
5 33 —0.0829065 12.7875 —0.108687 29.4107
6 29.1682 0.0176042 10.6307 0.0303911 25.3461
7 29.1682 0.0859907 29.0548 0.113316 43.7643
8 33 0.0165455 31.9703 0.0285656 48.5926
9 9.90404 —0.15017 8.17951 —0.200579 13.1367
10 14.1486 —0.250158 9.69981 —0.334102 16.8598
11 9.90404 0.152086 5.0151 0.203302 9.96021
12 — —0.252062 — —0.33746 —




2184 K.Yu. Volokh | International Journal of Solids and Structures 36 (1999) 2175-2187

Table 2
Space assembly analysis

Prestressing Displacements Force Displacements Force
forces P, (cm) increments (cm) increments
(kg) Q) Q) (2Q) (2Q)
1 30 0 38.9322 0 75.8429
2 30.1851 0.0875694 38.8896 0.125641 75.8608
3 34.0683 —0.152945 42.8128 —0.216299 83.4779
4 30 0 24.1757 0 47.6218
5 30.1851 0.0526575 24.5373 0.0735608 48.206
6 34.0683 0.0898643 28.7056 0.147574 56.3406
7 30.1851 0 2.22877 0 4.8447
8 32.7342 0 2.41305 0 5.22822
9 30.1851 0.584405 0.137208 0.825119 1.04135
10 32.7342 0 0.151596 0 1.15318
11 31.1655 —0.0819677 2.60681 —0.114789 6.36395
12 31.1655 —0.152817 9.19334 —0.216098 17.4541
13 30 0 2.18023 0 4.77063
14 30 —0.0452143 0.158709 —0.0599611 1.05587
15 30 0.0895431 2.22353 0.146988 5.67294
16 30.1851 0 2. 28674 0 5.77998
17 30 0 9.17411 0 17.3467
18 30.1851 0.585078 9.18752 0.826467 17.3998
19 11.9404 0.0118521 22.2768 0.0160398 44.4486
20 7.46271 0.0141493 1.71253 0.0232076 3.44285
21 17.9107 —0.0310265 13.5703 —0.0507007 26.4951
22 2.985 —0.0078483 0.114383 —0.0130434 0.281827
23 10.4478 0.0078483 0.633409 0.0130434 1.44567
24 8.95536 0.011755 1.60787 0.0186052 3.20851
25 — —0.0011755 — —0.0161192 —
26 — —0.0139707 — —0.0227718 —
27 — —0.0310046 — —0.0506517 —
28 — 0.0076036 — 0.012449 —
29 — —0.0076036 — —0.012449 —
30 — 0.0117472 — 0.0185816 —
31 — 0.0321671 — 0.0456988 —
32 — —0.0321671 — —0.0456988 —
33 — 0.106818 — 0.151813 —
34 — —0.0324732 — —0.0463135 —
35 — 0.0324732 — 0.0463135 —
36 — 0.10684 — 0.151851 —

nodal displacements and force increments where external force of 18 kg is applied at the central
bottom node (see figures). In the case of the plane net this load is horizontal and in the case of the
space assembly it is vertical. The fourth and fifth columns of Table 1 present nodal displacements
and force increments of the net where pre-stressing forces are ten times smaller (load is the same).
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Fig. 2. Underconstrained space assembly: bottom view and repeated quarter (vertical distances between supporting
points: 40; length of vertical members: /o = 8, b,y = L, = 12, ,; = 18, L,; = 22, [,, = 28; all dimensions are in cm).
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Table 3
Convergence rates for plane net analysis

Scheme Prestressing: P, Prestressing: 0.1 P,
DNR (FDNR) exact kinematics 5(5) 11 (9)

DNR (FDNR) small strains 5(5 11 (9)

DNR (FDNR) small displacements 5(5) 11 (9)

SDNR (SFDNR) small strains 6 (6) 12 (9)

Table 4

Convergence rates for space assembly analysis

Scheme Load: Q Load: 2Q
DNR (FDNR) exact kinematics 6 (5) 8 (6)
DNR (FDNR) small strains 6 (5) 8 (6)
DNR (FDNR) small displacements 6 (5) 8 (6)
SDNR (SFDNR) small strains 9 (10) 14 (12)

The fourth and the fifth columns of Table 2 present nodal displacements and force increments of
the space assembly where the load is doubled (pre-stressing forces are the same).

Tables 3 and 4 present convergence (number of iterations) of various computational schemes
with tolerance f# = 0.005 for all four cases of loading. Table 3 is related to the plane net and Table
4 to the space assembly. The second row of both tables presents convergence of displacement and
force—displacement Newton—Raphson schemes based on exact kinematics. The DNR scheme based
on exact kinematics is the most popular approach and may be found in most advanced texts on
structural analysis or nonlinear finite element analysis. The FDNR scheme with exact kinematics
was used by Szabo and Kollar (1984). The third and fourth rows present convergence of DNR
and FDNR schemes based on small strains and displacement assumptions correspondingly. It is
evident from the obtained results that the convergence rate is invariant with respect to kinematics
adopted. Consequently, kinematics based on the assumption of small strains is preferable as the
simplest one.

The fifth row of the tables presents convergence of subspace DNR and FDNR schemes. Their
convergence slightly slows down in comparison to previous schemes, however, dimension of the
inverted matrix is reduced from 12 to 2 in case of the net and from 150 to 15 in case of the space
assembly.

6. Concluding remarks

Displacement and force—displacement formulations of the Newton—Raphson scheme with their
“subspace modifications’ were considered for analyses of underconstrained structures based on
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various kinematic assumptions: ‘“‘exact kinematics”, ‘“‘small strains”, “small displacements”.
Obtained results suggest the following conclusions:

e Choice of kinematic equations does not influence convergence rate and, consequently, the
assumption of small strains is preferable computationally;

e Both displacement and force—displacement formulations of the Newton—Raphson technique
provide approximately the same rate of convergence;

e Subspace modifications of the classical Newton—Raphson schemes allow to reduce significantly
dimensions of inverted matrices without sensitive reduction of the convergence rate;

e Displacements of underconstrained structures are really small: exact analysis leads to the same
results as analysis based on small displacement assumptions.
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