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Abstract

Underconstrained "kinematically indeterminate# assemblies of bars and pin!joints possess a speci_c kind
of nonlinearity which appears even for small displacements and linear elasticity[ Various approaches to
nonlinear analysis based on the NewtonÐRaphson procedure are considered[ The subspace NewtonÐRaph!
son technique is proposed[ Theoretical considerations are accompanied by numerical examples of plane and
space underconstrained assemblies[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The concept of statical determinacy and indeterminacy is familiar to structural engineers[ Degree
of statical indeterminacy equals the di}erence between the number of the members of the assembly
and the rank of the equilibrium matrix[ Similarly a concept of kinematic determinacy and inde!
terminacy may be introduced[ The degree of kinematic indeterminacy equals the di}erence between
the number of degrees of freedom of the assembly and the rank of the geometric "transposed
equilibrium# matrix[ Nonzero degree of kinematic indeterminacy means existence of in_nitesimal
displacements which do not produce elongations of the members or\ in other words\ it means that
the system of linear homogeneous kinematic equations possesses a nontrivial solution "in_nitesimal
mechanism#[

Usually\ kinematically indeterminate assemblies "mechanisms or kinematic chains# cannot bear
an external load[ However\ there is a speci_c class of kinematically indeterminate assemblies*
underconstrained structures\ which can bear an external load[ These underconstrained structures
are of practical and theoretical interest[ On the one hand\ they are very light and their use leads to
economy of materials[ On the other hand\ a theory of underconstrained structures allows to
complete\ in some sense\ classical structural mechanics of pin!jointed assemblies[ Interest in the
theory of underconstrained structures arose lately "Calladine and Pellegrino\ 0880^ Kuznetsov\
0880^ Tarnai\ 0879^ Vilnay\ 0889#^ although they were used for a long time in engineering practice]
underconstrained cable nets\ tensegrity structures and so on[
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Problems of design and linear analysis of underconstrained structures based on the displacement
method and concept of sti}ness matrix were developed in Volokh and Vilnay "0886a\ b#[ Analysis
of underconstrained structures which takes into account geometrical nonlinearity is considered
below[

1[ NewtonÐRaphson procedures

1[0[ Formulation of the problem

Mathematically\ analysis of underconstrained "as well as fully constrained# structures is based
on]

, equilibrium equations

BT"P9¦P# � Q "0#

where B is an n×m geometric matrix of direction cosines^ P9 and P are vectors of initial member
forces and force increments^ Q is a vector of external nodal loads^

, constitutive equations "Hooke|s law#

P � SD "1#

where S is an n×n uncoupled sti}ness matrix with diagonal nonzero entries] Si � EiFi:li including
the ith member Young modulus\ cross!section area and length correspondingly^ D is a vector of
member elongations^

, kinematic equations

D � D"U# "2#

which present member elongations as a function of nodal displacements[

Various forms of eqn "2# are possible and will be discussed below "Section 3#[ It is important\
however\ that the choice of kinematic equations in~uences the form of equilibrium equations
"matrix B#[ This relationship may be traced\ generally\ by using the principle of virtual dis!
placements or\ in the case of elasticity\ with the help of the principle of stationarity of potential
energy[ This is the only way to obtain equilibrium equations consistent with used kinematic
assumptions[

Let the internal energy of deformation be written in matrix and componentwise forms as follows

V � 0
1
DTSD¦PT

9D "3#

V � s
n

i�0 0
0
1

SiD1
i ¦P9iDi1 "3?#

then the left hand side of eqn "0# is obtained by di}erentiating eqn "3# with respect to displacements
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1V
1U

� 0
1D
1U1

T

"P9¦P# "4#

1V
1Uj

� s
n

i�0 0SiDi

1Di

1Uj

¦P9i

1Di

1Uj1� s
n

i�0

1Di

1Uj

"P9i¦Pi# "4?#

Thus\

B �
1D
1U

"5#

Bij �
1Di

1Uj

"5?#

1[1[ NewtonÐRaphson procedure based on purely displacement formulation of the problem "DNR#

By substituting eqns "1#\ "2# into eqn "0# it is possible to obtain equilibrium equations in terms
of displacements[ The DNR procedure takes the following form in this case

K
i

dU
i

� Q−BT
i

"P9¦P
i

# "6#

P
i

� SD
i

"7#

U
i¦0

� U
i

¦dU
i

"8#

U
9

� 9 "09#

with the upper index designating iteration number[
The tangent sti}ness matrix may be written as follows

K
i

�
11V

1U 1U bUi � A
i

¦D
i

"00#

Kjk

i

�
11V

1Uk 1Uj bUi � Ajk

i

¦Djk

i

"00?#

where

A
i

� BTSB=Ui "01#

Ajk

i

� s
n

l�0

1Dl

1Uj

1Dl

1Uk

Sl bUi "01?#

D
i

�
1ðBT"P9¦P#Ł

1U bUi "02#
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Djk

i

� s
n

l�0

11Dl

1Uj 1Uk

"P9l¦Pl# bUi "02?#

By designating Euclidean vector norm as >=>1 and tolerance as b it is possible to formulate the
convergence criterion in the following form

>Q−BT
i

"P9¦P
i

#>1>Q>−0
1 ¾ b ½ 9[90 6 9[990 "03#

1[2[ NewtonÐRaphson procedure based on forceÐdisplacement formulation of the problem "FDNR#

In this case both displacements and force increments are considered as unknowns[ Substitution
of eqn "2# into eqn "1# leads to the following coupled system of equations

BT"P9¦P# � Q

SD−P � 9 "04#

Applying the NR procedure to these equations we obtain

BT
i

dP
i

¦D
i

dU
i

� Q−BT
i

"P9¦P
i

#

SB
i

dU
i

−dP
i

� P
i

−SD
i

"05#

Excluding dP
i

from the _rst equation the following is obtained

K
i

dU
i

� Q−BT
i

"P9¦SD
i

# "06#

P
i¦0

� P
i

¦dP
i

� SD
i

¦SB
i

dU
i

"07#

U
i¦0

� U
i

¦dU
i

"08#

U
9

� 9^ P
9

� 9 "19#

The convergence criterion takes the form

>Q−BT
i

"P9¦SD
i

#>1>Q>−0
1 ¾ b

2[ Orthogonal decomposition of displacements and {{subspace|| NewtonÐRaphson procedures

In this section it is considered how to take into account the speci_c features of underconstrained
assemblies| behaviour and to modify nonlinear analysis accordingly[ The main idea may be traced
to linear analysis[ In this case the NR procedure is limited by a single iteration

"BT
9

SB
9

¦D
9

#U � Q

which presents the key equation of linear analysis[ Matrix BT
9

SB
9

is dominant but rank de_cient[
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The latter is the reason why D
9

cannot be neglected in the case of underconstrained structures as
contrasted to fully constrained ones[ The structure of the initial sti}ness matrix suggests special
orthogonal decomposition of displacements and subsequent transformation of the equation]
Volokh and Vilnay "0886a#[ It is possible to extend this technique to nonlinear analysis assuming
that displacements are small and\ consequently\ the structure of the tangent sti}ness matrix is
similar to its initial form[

The displacement vector is presented as a sum of two mutually orthogonal vectors

U � Ue¦Uk "10#

Uk � Z0e0¦= = =¦Zm−rem−r "11#

Ue � Zm−r¦0em−r¦0¦= = =¦Zmem "12#

or

Uk � WZ^ W � "e0\ [ [ [ \ em−r#^ Z � "Z0\ [ [ [ \ Zm−r#T "13#

Ue � W	 Z	^ W	 � "em−r¦0\ [ [ [ \ em#^ Z	 � "Zm−r¦0\ [ [ [ \ Zm#T "14#

Here Z\ Z	 are vectors of new unknowns^ columns of matrices W and W	 form orthonormal bases

of the nullspace and row space of matrix B
9

correspondingly^ r is the rank of B
9

and m−r is nothing
but the degree of kinematic indeterminacy[ It is easy to observe the physical meaning of the
decomposition of displacements given by formulae "11#Ð"14#[ Vector Uk "k for {{kinematic||# is
solution of homogeneous initial kinematic equations[ This means that it presents in_nitesimal
displacements which do not produce member elongations or\ more accurately\ the elongations are
of smaller order of magnitude than displacements[ On the contrary\ vector Ue "e for {{elastic||#
represents displacements which produce member elongations of the same order of magnitude as
displacements[ Now displacement increments take the form

dU � ðW	 WŁ $
dZ	

dZ% "15#

By substituting eqn "15# into eqn "6# or "06# and premultiplying the latter by ðW	 WŁT from the left
it is possible to obtain

&
Ke

i

L
i

LT
i

Kk
i ' &

dZ	
i

dZ
i '� &

Q0

i

Q1

i ' "16#

where Q0

i

\ Q1

i

are right hand side of eqn "6# or "06# premultiplied by W	 T and WT correspondingly^
Ke � W	 TKW	 is an r×r elastic tangent sti}ness matrix^ Kk � WTKW is an m−r×m−r kinematic
tangent sti}ness matrix^ L � W	 TKW[

Equation "16# may be rewritten as follows]

ðKk
i

−LT
i

"Ke
i

#−0L
i

ŁdZ
i

� Q1

i

−LT
i

"Ke
i

#−0Q0

i

"17#
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Ke
i

dZ	
i

� Q0

i

−L
i

dZ
i

"18#

Neglecting small values in the above equations we obtain

Kk
i

dZ
i

� Q1

i

"29#

Ke
9

dZ	
i

� Q0

i

−L
i

dZ
i

"20#

Thus the kinematic sti}ness matrix of small dimension "m−r ð m# is inverted at every iteration\
while the elastic sti}ness matrix of large dimensions is constant and must be inverted only
once[ Taking into account that convergence of the procedure is a}ected mainly by kinematic
displacements which span only the m−r subspace of the displacement space it is natural to call
this procedure {{subspace||[ Implementation of eqns "29#\ "20# instead of eqn "6# leads to the
subspace NR procedure on the base of displacement formulation "SDNR#[ Implementation of
eqns "29#\ "20# instead of eqn "06# leads to the subspace NR procedure on the base of forceÐ
displacement formulation "SFDNR#[

An important feature of the subspace technique is the possibility to identify the case of {{equi!

librium load|| "which lies in the column space of the initial equilibrium matrix B
9 T# at the _rst

iteration[ In this case

>Uk
0

>1>Ue
0

>−0
1 ¾ 0 "21#

and the procedure may be interrupted as unnecessary[

3[ Kinematic equations

All the above considerations were carried out without explicit formulation of kinematic eqns
"2#[ Let now various forms of these equations be considered[

3[0[ Exact equations

This is the most obvious case which does not use any assumption

Di � l?i−li "22#

l?i � z"Xj¦Uj−Xs−Us#1¦"Xj−0¦Uj¦0¦Xs¦0−Us¦0#1¦"Xj¦1¦Uj¦1−Xs¦1−Us¦1#1

"23#

li � z"Xj−Xs#1¦"Xj¦0−Xs¦0#1¦"Xj¦1−Xs¦1#1 "24#

It should be noted that Ujth displacement is zeroed if it corresponds to a supporting point[
Thus the geometric matrix takes the following form
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Bij �
1Di

1Uj

�
Xj−Xs¦Uj−Us

l?i
"25#

Entries of the geometric sti}ness matrix are exact direction cosines for deformed con_guration[

3[1[ Small strains

By introducing new notation

oi � ei¦vi "26#

ei �
Xj−Xs

li

Uj−Us

li
¦

Xj¦0−Xs¦0

li

Uj¦0−Us¦0

li
¦

Xj¦1−Xs¦1

li

Uj¦1−Us¦1

li
"27#

vi �
0
1 0

Uj−Us

li 1
1

¦
0
1 0

Uj¦0−Us¦0

li 1
1

¦
0
1 0

Uj¦1−Us¦1

li 1
1

"28#

eqn "23# takes the form

l?i � liz0¦1oi "39#

On the other hand an {{engineering|| strain or relative elongation of the ith member is de_ned as
follows

Ti �
Di

li
�

l?i−li
li

"30#

from which it is obtained that

l?i � li"0¦Ti# "31#

By equating right hand sides of eqns "39# and "31# it is possible to conclude that

Ti¦
0
1
T1

i � oi "32#

In case of small strains "but not displacements# eqn "32# is replaced approximately by the following

Ti � oi ð 0 "33#

Thus the ith member elongation takes the form Di � lioi and with account of eqns "26#Ð"28# the
geometric matrix takes the following form

Bij �
1Di

1Uj

�
Xj−Xs¦Uj−Us

li
"34#

Intuitively\ this equation may be obtained directly from eqn "25# in assumption l?i � li[



K[Yu[ Volokh : International Journal of Solids and Structures 25 "0888# 1064Ð10761071

3[2[ Small displacements

In this case we assume that

a �
Uj

li
ð 0 "35#

for appropriate i and j and\ expanding Di � li"z0¦1oi−0# into power series about displacements\
obtain

Di � li 0oi−
e1

i

1 1 "36#

Terms of the third! and higher!orders of magnitude with respect to a are omitted[ The i jth entry
of the geometric matrix is

Bij �
1Di

1Uj

�
"Xj−Xs#"0−ei#¦Uj−Us

li
"37#

3[3[ Discussion

Comparing entries of geometric matrices presented by eqns "25#\ "34# and "37# in accordance
with exact kinematics\ small strains and small displacement assumptions\ it is possible to conclude
that the assumption of small strains leads to the simplest and computationally preferable scheme\
which is also general enough for linear elasticity[ However\ the _nal choice of kinematics should
be left to numerical examples which allow to compare convergence of the procedures based on
di}erent kinematics[

Another interesting and\ mainly\ theoretical aspect of comparison of various formulations of
kinematics is the possibility to identify {{smallness|| of displacements[ Indeed\ let some computed
displacements satisfy estimate a ½ 9[0 or 9[90 or 9[990[ Are they small< This question may be
answered only by comparing results based on kinematics with and without small displacement
assumptions[

4[ Numerical examples

Two structures are considered[ The _rst one "Fig[ 0# is a plane underconstrained cable net and
the second one "Fig[ 1# is an underconstrained space assembly symmetric relatively horizontal
middle plane[ Both structures comprise members of circular cross!section diameter 9[3 cm and
elasticity modulus 1[0 = 095 kg:cm1[ The plane net includes 00 members and possesses 01 degrees of
freedom[ Its degree of kinematic indeterminacy is two[ The space assembly includes 034 members
and possesses 049 degrees of freedom[ Its degree of kinematic indeterminacy is 04[ Pre!stressing
forces of both structures are given in the _rst column of Tables 0 and 1[ Pre!stressing forces of the
space assembly are given for some typical members only and may be extended to the rest with
account of symmetry[ The second and the third columns of the tables present computed values of
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Fig[ 0[ Underconstrained plane net "all dimensions are in cm#[

Table 0
Plane net analysis

Prestressing Displacements Force Displacements Force
forces P9 "cm# increments "cm# increments
"kg# "P9# "P9# "9[0 P9# "9[0 P9#

0 22 −9[024650 12[0762 −9[06458 28[6702
1 18[0571 9[116220 08[6623 9[183634 23[3332
2 18[0571 9[0261 08[5406 9[066540 23[2112
3 22 9[115977 10[2656 9[18151 26[8554
4 22 −9[9718954 01[6764 −9[097576 18[3096
5 18[0571 9[9065931 09[5296 9[9292800 14[2350
6 18[0571 9[9748896 18[9437 9[002205 32[6532
7 22 9[9054344 20[8692 9[9174545 37[4815
8 8[89393 −9[04906 7[06840 −9[199468 02[0256

09 03[0375 −9[149047 8[58870 −9[223091 05[7487
00 8[89393 9[041975 4[9040 9[192291 8[85910
01 * −9[141951 * −9[22635 *
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Table 1
Space assembly analysis

Prestressing Displacements Force Displacements Force
forces P9 "cm# increments "cm# increments
"kg# "Q# "Q# "1Q# "1Q#

0 29 9 27[8211 9 64[7318
1 29[0740 9[9764583 27[7785 9[014530 64[7597
2 23[9572 −9[041834 31[7017 −9[105188 72[3668
3 29 9 13[0646 9 36[5107
4 29[0740 9[9415464 13[4262 9[9624597 37[195
5 23[9572 9[9787532 17[6945 9[036463 45[2395
6 29[0740 9 1[11766 9 3[7336
7 21[6231 9 1[30294 9 4[11711
8 29[0740 9[473394 9[026197 9[714008 0[93024

09 21[6231 9 9[040485 9 0[04207
00 20[0544 −9[9708566 1[59570 −9[003678 5[25284
01 20[0544 −9[041706 8[08223 −9[105987 06[3430
02 29 9 1[07912 9 3[66952
03 29 −9[9341032 9[047698 −9[9488500 0[94476
04 29 9[9784320 1[11242 9[035877 4[56183
05 29[0740 9 1[ 17563 9 4[66887
06 29 9 8[06300 9 06[2356
07 29[0740 9[474967 8[07641 9[715356 06[2887
08 00[8393 9[9007410 11[1657 9[9059287 33[3375
19 6[35160 9[9030382 0[60142 9[9121965 2[33174
10 06[8096 −9[9209154 02[4692 −9[9496996 15[3840
11 1[874 −9[9967372 9[003272 −9[9029323 9[170716
12 09[3367 9[9967372 9[522398 9[9029323 0[33456
13 7[84425 9[900644 0[59676 9[9075941 2[19740
14 * −9[9900644 * −9[9050081 *
15 * −9[9028696 * −9[9116607 *
16 * −9[9209935 * −9[9495406 *
17 * 9[9965925 * 9[901338 *
18 * −9[9965925 * −9[901338 *
29 * 9[9006361 * 9[9074705 *
20 * 9[9210560 * 9[9345877 *
21 * −9[9210560 * −9[9345877 *
22 * 9[095707 * 9[040702 *
23 * −9[9213621 * −9[9352024 *
24 * 9[9213621 * 9[9352024 *
25 * 9[09573 * 9[040740 *

nodal displacements and force increments where external force of 07 kg is applied at the central
bottom node "see _gures#[ In the case of the plane net this load is horizontal and in the case of the
space assembly it is vertical[ The fourth and _fth columns of Table 0 present nodal displacements
and force increments of the net where pre!stressing forces are ten times smaller "load is the same#[
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Fig[ 1[ Underconstrained space assembly] bottom view and repeated quarter "vertical distances between supporting
points] 39^ length of vertical members] l08 � 7\ l19 � l11 � 01\ l10 � 07\ l12 � 11\ l13 � 17^ all dimensions are in cm#[
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Table 2
Convergence rates for plane net analysis

Scheme Prestressing] P9 Prestressing] 9[0 P9

DNR "FDNR# exact kinematics 4 "4# 00 "8#
DNR "FDNR# small strains 4 "4# 00 "8#
DNR "FDNR# small displacements 4 "4# 00 "8#
SDNR "SFDNR# small strains 5 "5# 01 "8#

Table 3
Convergence rates for space assembly analysis

Scheme Load] Q Load] 1Q

DNR "FDNR# exact kinematics 5 "4# 7 "5#
DNR "FDNR# small strains 5 "4# 7 "5#
DNR "FDNR# small displacements 5 "4# 7 "5#
SDNR "SFDNR# small strains 8 "09# 03 "01#

The fourth and the _fth columns of Table 1 present nodal displacements and force increments of
the space assembly where the load is doubled "pre!stressing forces are the same#[

Tables 2 and 3 present convergence "number of iterations# of various computational schemes
with tolerance b � 9[994 for all four cases of loading[ Table 2 is related to the plane net and Table
3 to the space assembly[ The second row of both tables presents convergence of displacement and
forceÐdisplacement NewtonÐRaphson schemes based on exact kinematics[ The DNR scheme based
on exact kinematics is the most popular approach and may be found in most advanced texts on
structural analysis or nonlinear _nite element analysis[ The FDNR scheme with exact kinematics
was used by Szabo and Kollar "0873#[ The third and fourth rows present convergence of DNR
and FDNR schemes based on small strains and displacement assumptions correspondingly[ It is
evident from the obtained results that the convergence rate is invariant with respect to kinematics
adopted[ Consequently\ kinematics based on the assumption of small strains is preferable as the
simplest one[

The _fth row of the tables presents convergence of subspace DNR and FDNR schemes[ Their
convergence slightly slows down in comparison to previous schemes\ however\ dimension of the
inverted matrix is reduced from 01 to 1 in case of the net and from 049 to 04 in case of the space
assembly[

5[ Concluding remarks

Displacement and forceÐdisplacement formulations of the NewtonÐRaphson scheme with their
{{subspace modi_cations|| were considered for analyses of underconstrained structures based on
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various kinematic assumptions] {{exact kinematics||\ {{small strains||\ {{small displacements||[
Obtained results suggest the following conclusions]

, Choice of kinematic equations does not in~uence convergence rate and\ consequently\ the
assumption of small strains is preferable computationally^

, Both displacement and forceÐdisplacement formulations of the NewtonÐRaphson technique
provide approximately the same rate of convergence^

, Subspace modi_cations of the classical NewtonÐRaphson schemes allow to reduce signi_cantly
dimensions of inverted matrices without sensitive reduction of the convergence rate^

, Displacements of underconstrained structures are really small] exact analysis leads to the same
results as analysis based on small displacement assumptions[
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